550 research outputs found

    The vascular nature of COVID-19

    Get PDF
    A potential link between mortality, D-dimer values and a prothrombotic syndrome has been reported in COVID-19 patients. The National Institute for Public Health of the Netherlands published a report for guidance on diagnosis, prevention and treatment of thromboembolic complications in COVID-19 with a new vascular disease concept. The analysis of all available current medical, laboratory and imaging data on COVID-19 confirms that symptoms and diagnostic tests can not be explained by impaired pulmonary ventilation. Further imaging and pathological investigations confirm that the COVID-19 syndrome is explained by perfusion disturbances first in the lung, but consecutively in all organs of the body. Damage of the microvasculature by SARS 1 and SARS 2 (COVID-19) viruses causes microthrombotic changes in the pulmonary capillaries and organs leading to macrothrombosis and emboli. Therefore anticoagulant profylaxis, close lab and CT imaging monitoring and early anticoagulant therapy are indicated

    Cardiac T-2* mapping:Techniques and clinical applications

    Get PDF
    Cardiac T-2* mapping is a noninvasive MRI method that is used to identify myocardial iron accumulation in several iron storage diseases such as hereditary hemochromatosis, sickle cell disease, and beta-thalassemia major. The method has improved over the years in terms of MR acquisition, focus on relative artifact-free myocardium regions, and T-2* quantification. Several improvement factors involved include blood pool signal suppression, the reproducibility of T-2* measurement as affected by scanner hardware, and acquisition software. Regarding the T-2* quantification, improvement factors include the applied curve-fitting method with or without truncation of the signals acquired at longer echo times and whether or not T-2* measurement focuses on multiple segmental regions or the midventricular septum only. Although already widely applied in clinical practice, data processing still differs between centers, contributing to measurement outcome variations. State of the art T-2* measurement involves pixelwise quantification providing better spatial iron loading information than region of interest-based quantification. Improvements have been proposed, such as on MR acquisition for free-breathing mapping, the generation of fast mapping, noise reduction, automatic myocardial contour delineation, and different T-2* quantification methods. This review deals with the pro and cons of different methods used to quantify T-2* and generate T-2* maps. The purpose is to recommend a combination of MR acquisition and T-2* mapping quantification techniques for reliable outcomes in measuring and follow-up of myocardial iron overload. The clinical application of cardiac T-2* mapping for iron overload's early detection, monitoring, and treatment is addressed. The prospects of T-2* mapping combined with different MR acquisition methods, such as cardiac T-1 mapping, are also described. Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2019

    Risk assessment in relation to the detection of small pulmonary nodules

    Get PDF
    The National Lung Cancer Screening trial (NLST) demonstrated that individuals assigned to the LDCT screening arm had a 20% lower mortality than those who were assigned to the conventional chest radiography. The NLST was thoroughly analyzed by the US Preventive Task Force on CT Screening and they recommended that lung cancer screening should be implemented. A number of other countries have also recommended implementation, whilst others are awaiting the outcome of the NELSON Trial. However, recommendations for the management of CT screen detected nodules have only recently had any clarity. The management of CT detected nodules in the NLST was based on the identification and reporting of 4 mm diameter nodules found on the CT screens but there was no NLST radiology protocol in place for the management of nodules. The use of volumetric analysis is not routinely used in the USA and there is still a reliance on utilising the CT nodule diameter as the management parameter. The first pulmonary risk model was developed by the Canadians, utilising data sets from the Pan-Canadian Early detection of Lung cancer (PanCan) and validated in the chemoprevention trial dataset at the British Columbian Agency. This Canadian model, known as the Brock Model, is currently available and has been integrated into the British Thoracic Society guidelines on the management of pulmonary nodules. The American College of Radiology setup a Lung Cancer Screening Committee subgroup on Lung-RADS, to standardize lung cancer screening CT reporting and provide management recommendations. However, it has been recommended that the Lung-RADS system should be revised as the system as it has never been studied in a prospective fashion. The NELSON trial introduced a third screening test, the "indeterminate" screening test result, this was done with the aim to reduce the false-positives CT screening results and also utilized by the UKLS trial successfully. On comparing the radiological CT screen volumetric and diameter based protocols in the NELSON trial, the sensitivity and negative predictive value appeared to be comparable, however a higher specificity and positive predictive value was found for the volume-based protocols, thus confirming the advantage of utilising the volumetric approach over diameter The British Thoracic Society (BTS) has undertaken an in-depth piece of work developing guidelines on the management of pulmonary nodules, utilising the wealth of data published by the NELSON team and support the use of volumetric analysis for the management of pulmonary nodules

    Low-Dose CT lung cancer screening:clinical evidence and implementation research

    Get PDF
    Lung cancer causes more deaths than breast, cervical, and colorectal cancer combined. Nevertheless, population-based lung cancer screening is still not considered standard practice in most countries worldwide. Early lung cancer detection leads to better survival outcomes: patients diagnosed with stage 1A lung cancer have a >75% 5-year survival rate, compared to < 5% at stage 4. LDCT thorax imaging for the secondary prevention of lung cancer has been studied at length, and has been shown to significantly reduce lung cancer mortality in high-risk populations. The US national lung screening trial reported 20% overall reduction in lung cancer mortality when comparing LDCT to chest x-ray, and the NELSON trial more recently reported 24% reduction when comparing LDCT to no screening. Hence, the focus has now shifted to implementation research. Consequently, the 4-IN-THE-LUNG-RUN consortium, based in 5 European countries, has set up a large-scale multi-center implementation trial. Successful implementation and accessibility of low-dose CT lung cancer screening are dependent on many factors, not limited to; population selection, recruitment strategy, CT-screening frequency, lung nodule management, participant compliance and cost-effectiveness. This review provides an overview of current evidence for LDCT lung cancer screening, and draws attention to major factors which need to be addressed to successfully implement standardized, effective, and accessible screening throughout Europe. Evidence shows that through the appropriate use of risk-prediction models and a more personalized approach to screening, efficacy could be improved. Further, extending the screening interval for low-risk individuals to reduce costs and associated harms is a possibility, and through the use of volumetric based measurement and follow-up, false positive results can be greatly reduced. Finally, smoking cessation programs could be a valuable addition to screening programs and artificial intelligence could offer the solution to the added workload pressures Radiologists are facing

    Design and evaluation of a computed tomography (CT)-compatible needle insertion device using an electromagnetic tracking system and CT images

    Get PDF
    Purpose Percutaneous needle insertion procedures are commonly used for diagnostic and therapeutic purposes. Although current technology allows accurate localization of lesions, they cannot yet be precisely targeted. Lung cancer is the most common cause of cancer-related death, and early detection reduces the mortality rate. Therefore, suspicious lesions are tested for diagnosis by performing needle biopsy. Methods In this paper, we have presented a novel computed tomography (CT)-compatible needle insertion device (NID). The NID is used to steer a flexible needle (ϕ0.55mm ϕ0.55mm) with a bevel at the tip in biological tissue. CT images and an electromagnetic (EM) tracking system are used in two separate scenarios to track the needle tip in three-dimensional space during the procedure. Our system uses a control algorithm to steer the needle through a combination of insertion and minimal number of rotations. Results Noise analysis of CT images has demonstrated the compatibility of the device. The results for three experimental cases (case 1: open-loop control, case 2: closed-loop control using EM tracking system and case 3: closed-loop control using CT images) are presented. Each experimental case is performed five times, and average targeting errors are 2.86±1.14 2.86±1.14, 1.11±0.14 1.11±0.14 and 1.94 0.63mm 1.94±0.63mm for case 1, case 2 and case 3, respectively. Conclusions The achieved results show that our device is CT-compatible and it is able to steer a bevel-tipped needle toward a target. We are able to use intermittent CT images and EM tracking data to control the needle path in a closed-loop manner. These results are promising and suggest that it is possible to accurately target the lesions in real clinical procedures in the future
    • …
    corecore